US009483374B2

a2 United States Patent
Ethiraj et al.

US 9,483,374 B2
Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

References Cited

(54) PSMI USING AT-SPEED SCAN CAPTURE (56)

U.S. PATENT DOCUMENTS

(75) Inventors: Vinothkumar V. Ethiraj, Bangalore
(IN); Kevin D. Safford, Fort Collins, 7401272 Bl 72008 Birk ef al.
CO (US) 7,617425 B2 112009 Nadeau-Dostie et al.
7,882,000 B2 2/2011 Jones
(73) Assignee: Intel Corporation, Santa Clara, CA 2003/0154430 A1* 82003 Allen ... GOG6F 11/364
Us) 714/45
(Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
US.C. 154(b) by 149 days. ™ 200634509 A 10/2006
(21) Appl. No.: 13/993,318
OTHER PUBLICATIONS
(22) PCT Filed: Dec. 21, 2011 Dictionary definition retrieved from https://en.wikipedia.org/wiki/
Debugger.*
(86) PCT No.: PCT/US2011/066656 .
(Continued)
§ 371 (o)D),
(2), (4) Date: Jun. 11, 2013 Primary Examiner — Yair Leibovich
(74) Attorney, Agent, or Firm — Nicholson De Vos
(87) PCT Pub. No.: WO02013/095469 Webster & Elliott LLP
PCT Pub. Date: Jun. 27, 2013 (57) ABSTRACT
(65) Prior Publication Data In accordance with embodiments disclosed herein, there are
provided methods, systems, mechanisms, techniques, and
US 2014/0089737 Al Mar. 27, 2014 apparatuses for implementing and using PSMI using at-
speed scan capture. For example, in one embodiment, such
(51) Int. CL a system includes an input signal capture device to capture
GO6F 11/00 (2006.01) input signals input to a silicon processor under test; a scan
GO6F 11263 (2006.01) capture device to capture a scan snapshot representing a
GOG6F 1126 (2006.01) known state of a plurality of digital elements integrated
GO6F 11/267 (2006.01) within the silicon processor under test, each having state
(52) US.Cl data for the silicon processor under test; a scan read-out
CPC ... GOGF 11/263 (2013.01); GO6F 11/261 S;Vrfge ?Olfl?gfg‘;ﬁgﬁt; Jhe captured tflzaglisc%?iﬁgtcetsosoi
. . (2(.)13'01); GO6F 11/267 (2013.01) under test; and a model of the silicon processor under test to
(58) Field of Classification Search replay a subset of a test sequence for the silicon processor
CPC GOGF 11/263; GOGF 11/261; GO6F under test based at least in part on the captured input signals
17/5022; GO1R 31/318357 and the captured scan snapshot.
USPC ittt 714/32, 33

See application file for complete search history.

Stat)

0T

Y
Capturing input signals applied to a silicon processar
under test, 405

L J
Capturing a scan snapshot representing a known state
of a plurality of digital elements infegrated within the
silicon processor under test.

L J
Performing an at-spaed scan capture of functional
flops and latches within the silicon processor
under test onto scan latches within the silicon
processor under test.

L 4
Quigscing the silicon processor under test to train and
invalidate SRAMs internal fo the silicon processor
under test. 420

L 4

Capturing state data of the respective SRAMs afler
quiescing the silicon processor under test. 25

23 Claims, 13 Drawing Sheets

Recommencing the test sequence after both of
performing the at-speed scan capture and capturing
state data of the respective SRAMs. 430

after termination of the fest sequence. 438

‘ Extracting the scan snapshot via an external interface ‘

Storing the captured input signals and the captured
scan snapshot to a storage point physically extenal
from the silicon processor under test, 440

with the captured scan snapshot. 445

'

Replaying a subset of a test sequence of silicon
processor under test within the model of the silicon
processor under test by applying the captured input

signals.

:

Diagnosing the failurs mode via the model of the silicon
processor under test. 5

Jumpstarting a model of the silicon processor under Iest‘

End)

US 9,483,374 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2009/0125770 Al
2011/0179309 Al1*

5/2009 Parulkar
7/2011 Pathirane GO6F 11/3648
714/37

OTHER PUBLICATIONS
Dictionary definition retrieved from https://en.wikipedia.org/wiki/
Software__testing.™

PCT International Search Report for PCT Counterpart Application
No. PCT/US2011/066656, 3 pgs., (Sep. 25, 2012).

PCT Written Opinion of the International Searching Authority for
PCT Counterpart Application No. PCT/US2011/066656, 3 pgs.,
(Sep. 25, 2012).

PCT Notification concerning Transmittal of International Prelimi-
nary Report on Patentability (Chapter I of the Patent Cooperation
Treaty) for PCT Counterpart Application No. PCT/US2011/066656,
S pgs., (Jul. 3, 2014).

Taiwan IPO Search Report from foreign counterpart Taiwan Patent
Application No. 101145432, mailed Jul. 7, 2014, 1 page.

* cited by examiner

US 9,483,374 B2

Sheet 1 of 13

Nov. 1, 2016

U.S. Patent

R E

‘Bngap sousbisaip
dn peads 0} ejep ueds asn 7L

i

‘Reydau
INSd pue pejsdwnl wiopad TGT

BngoQ aouabiani(] Jeise4
:0bBIBA0D) UEDS MO OTT

"gonpo.das o) smoyl Aejdai NS @SN T

JulodouAs Je (jopow “b'a)
ubisap 0JUO BJep UBJS || PROUSAQ TTT

i

]

‘Rejdal
Jersduwin o) UoleWIOI PaJORIXS SN ThT

"JuI0dauAs yoeal
0] Moy} Aejda. NS [BWILIW BSN ZET

i

]

"B)ep Ues WoJj sieysibe [0:9u0d 10riXT TFT

uolesnBiued
Bunyom paxi} e Joj Aejdel Jeysdwnp TET

asodx3 ajels paonpay
:8bBIaA07) UBDS JojsiBoy (onuo) ybiH TFT

$aIUBpUadap [apOW U0II|IS-3id JassaT]
‘obeloncy) uess ybiH 0T

JUSUILIOJIAUS U0I|IS-8id Ul ainjie} sonpoiday o) suondo 0z)

saunjeal |euonoun; Bunsixe as -
UILIRIop NS [BWIUIA -

JOyd uonepieA |INS paanpay 711

sBng pue uosnujul peonpay -
950dx@ 8)E)s ou JO [ewIUI -
Alessadau smojj asainb AugQ -

JopueyY |NSd Jeldwis TTT

INSd b._mm_ 1500 MO :s)ljsuag 01T

wmoaxm_w_mcm_w * %
Emc%uw
aeis | every

Ayiqedes |ySd
)M uonounfucd ul saimden
Ueos peads-ie Jo asn 00T

ainyded a%e. |NSd 2SN 60T

+

dV1 03 elep ueas sdwnp 4661y ainjie4 go}

&

"590Je| UEJS 0] SAUJE|
pue sdoj) [euonauny o ainjdes uess paads
- ue sJofbiy E_o%Em IINSd Aieng T0T

+

uoioafu] |INSd L 1s8) unisy 90T

IS Y UoaljiS ul @unjie} sonpoudey SOT

US 9,483,374 B2

Sheet 2 of 13

Nov. 1, 2016

U.S. Patent

¢ 9l

Joysdeus
uess painyden
sieufis 09¢ [
Induj painiden — — | [JOEINWIS Joje|nw
—0\@ 1881 Japun Jossacud
_E uoollis Jo [epojy 0G¢
"
/ d0BLBIY|
_~ euerg (2imdes |eubis)
| tousdeus ueog / LT suauoduwioo
| ®_ (67 sjuewa|3 ey 2160 oIp-uQ
T T = 4 voge sousnbeg
! 74 !
| oome _ “ wel
Juiod sbeio)g - oinde omu o
Tgz |1 dEQ US|
(|23 S NN o —) 2%
- N __ D |
714 |
sjeubis indy
sieubig 158 Japun Jossaa04d UodI|IS GOZ \
\ Indu| paimden ___
N T
~ W |
S~ — = (smdeoeubs) !
I Jazhleuy 21607

US 9,483,374 B2

Sheet 3 of 13

Nov. 1, 2016

U.S. Patent

(opow aun|ie}
“6-9) uoneuiwe |
0¢ce

E 11y BUI} S)eIpaWIR)Y|
eee
uojeINwIS
10/pue uorenws E Bl SjeIpaLLIBIU|
ybnaoy) spow a.n|ie ove
gee
‘[epow 03 sjeubis E sl ajeIpaluIBlY|
Indui Adde pue She
WI0douAs Je pejsdwnp
05¢
TEm EEIN
aousnbag
189] uifiag
ace
EEm EET
<) 38U YBnoiy) 1 oW = e === emmmmmmmemennaaan 3L] Yinoiy 1 QE:...........-..........L
Y
[BPOI Lo oo“gwm s8] UOOI|IS U0 90usNnbeg N — 008

|019sans Aejday 0z¢

189] Jo uoneinq ¢l M mu_n_

US 9,483,374 B2

Sheet 4 of 13

Nov. 1, 2016

U.S. Patent

S5 '169] Japun Jossanold
UO9I|IS BU) JO |3pOW BU) EIA Bpow aunjiey ay) Buiscubeig

Gy "1$8] Japun Jossad0.d uodl|is ay) Buisainb
Jo)le SIS BAnoadsal syl Jo ejep S1els Bulinde)

057 ‘sjeuis
ndul painjdes ay) BulAidde Aq 158) Japun 108539010
U09|IS 8} JO [SPOLU Y} UILNIM }$8) Japun J0ssa00.d
L09I|IS JO 8dUBNDaS 158) B |0 18sans e Bulfeday

44 188 Japun
10§89904d UBII|IS U} 0} [eUIBIUI SNVYS S1EpeAUl
pUE UIRJ) 0} 188) Japun J0ssa304d U0DI|IS B} Buidsaing

!

Shy Joysdeus ueas painydea oy yIm
18] Japun Jossao0.d uodljis ay) Jo japow e Buieysdwnp

TFF 159} Jopun J0s$3201d UOD||IS U} WOl
|eusalxa AjeaisAyd juiod afe.ols e o) joysdeus uess
paimdes ay; pue sjeubls Indul paimdes sy Buloig

Tep "9ouanbes }se) ay) Jo uopeulws) Joje
20BUAIUI [BLIBIXD UE BIA Joysdeus ueas ay) Bunoeinxg

!

7 'J$9) Japun Jossadoud
UO2I|IS BUJ UIYIM SBUIE| UBDS 0JUO 188 Japun
J10$$20.d UODIIS 8U UIIM SBYJTE| pUE sdoj
[euonaun; o ainjdes uess pasds-je ue Buiwiouad

LO)|

(]% "89] JSpUN 108$3901d UOD||IS
8y) uiyym pajeldisyul sjuswele [eybip jo Ayeinid e jo
21815 umouy e Bunuasajdal joysdeus ueds e buunyden

Sor ')$8) Japun
Jossaa0id uodyis e ¢} paljdde sjeuis jndur Bunden

0EF "SINWYS sApdadsal sy Jo elep djeis
Buumdes pue ainided ueds peads-e ay) Bulwiopad
10 U104 Jo)je 90uanbas 1591 ayl BUIDUSLIWLCISY

+

I

- N
r N

Looyes)

" > ¥ 9l

U.S. Patent Nov. 1, 2016
502
SILICON
PROCESSOR
UNDERTEST [™
’ SIGNAL 1 525
| CAPTURE
[PROCESSING || 576
\ LOGIC
— 504
MAIN MEMORY
N ————
524
QUIESCE UNIT
,— 508
NETWORK
INTERFACE CARD [€———p
(NIC)

\

e

Ve
\/'/ ’/\k
\ 520

BUS

Sheet 5 of 13

US 9,483,374 B2

s 50 FIG.5

PERIPHERAL 536
“ > DEVICE &
—512
ALPHANUMERIC
- INPUT DEVICE
CURSOR
514—| CONTROL DEVICE
510
<«—»| USER INTERFACE
~—530
—516
INTEGRATED
- > SPEAKER
s 518
SECONDARY MEMORY
MACHINE-ACCESSIBLE | | , 531
STORAGE MEDIUM
- Pr = .
1| 522

SOFTWARE

1

N4

U.S. Patent Nov. 1, 2016 Sheet 6 of 13 US 9,483,374 B2

= 615
r-——=—">""~>"~>"=—"=—""=—"=—7"+— 1
| | /
l _/_
: :’ e 610
600 ! !
R‘ [[
| |
| |
! I PROCESSOR
L——+
| 695
_— 645 ~—620 — 640
DISPLAY GMCH MEMORY
650
ICH
EXTERNAL
GRAPHICS PERIPHERAL
DEVICE

FIG. 6

US 9,483,374 B2

Sheet 7 of 13

Nov. 1, 2016

U.S. Patent

ONY 3000 07 — —
— 71 7l
ZOVHOLS VIV - S$30IA30 WINOD 3SNOW/AYYOaAIM
—1 X | .
(7 v (i
/1 0Ny $30IA30 O/ 390148 Snd
9L ﬁ —
] 9 5l
4/ 4 SOIHdYYD
= JONVINNO A
861 51 13SdIHD v61 o
dd dd
¥51)vi %!)vi
dd| [dd|—wldd] [dd
06
IZ9) 787 Ul &l
AMOWIW NI o AMOWIW
087 ¥0SS3V0Yd 077 HOSSID0Yd .
00

US 9,483,374 B2

Sheet 8 of 13

Nov. 1, 2016

U.S. Patent

g8
O/l AO¥9T1
969
41
868 763 13SdIHD 768
d-d d-d
%)vI %)vi
d-d dd 3 dd [[dd
058
¥E3 793 3 FAS]
AHOWAN b 0 L AHOWAN
083 40$S300¥d 023 40$S300Md
T 008
S301A30 O/l

US 9,483,374 B2

Sheet 9 of 13

Nov. 1, 2016

U.S. Patent

06 Jossa004d
pajesBolu| —/
€06
89BLJ8)UI Yono |
30109
funndwos 10|qe
106

<

auoydiews
PIdY-pueH
206
06 J0ss8004d
pajelBajy|

€06
8oeLIB)UI 4oano|

6 Ol

US 9,483,374 B2

Sheet 10 of 13

Nov. 1, 2016

U.S. Patent

el
JOV4H3LNI
AV1dSId

0E0l
WILSASANS AV1dSId

060}
INFWIOYNYIN 4IMOd

vl

H3TIOHLINCD Ol

0co1
W3LSASENS olany

010}
d0SS3004d

W31SASENS AHOWIW

0901

w201
SST1AIM

7801 ¢80l
oY 0L

0801
SNOILOANNOD TVH3HdI43d

ol
¥YINT130

0.00

ALIAILOANNOD

US 9,483,374 B2

Sheet 11 of 13

Nov. 1, 2016

U.S. Patent

07k~

61T WNIQIN OVHOLS
ST 01T
H :mw . JUYMLA0S
VL1vaNOIS3d NOILYTNINIS
TYIISAHd HO 1QH)
T300W THVMAYYH
SOl
NOILYDIHEYA

U.S. Patent

Nov. 1, 2016 Sheet 12 of 13

US 9,483,374 B2

—
N
()]

—
N
—
(a]

—
N
=Y
a

FIG. 12

US 9,483,374 B2

Sheet 13 of 13

Nov. 1, 2016

U.S. Patent

0gl
JFOVNONYT TIAITHOH

goct

voel H34N0D
43710 98X 135 NOILONYLSNI
FAILVNSILTY

90¢}
3000 AYVNIG 98X

el
HA1HIANOD NOILONYLSNI
. orel
MF G—H— 400D AHVYNIF
13S NOILONYLSNI
INYMIH0S JAILYNYILY
FHYMAYVYH
< Y
orel vict
340D 3409 13S NOILONYLSNI
13S NOILONYLSNI 98X ANO 98X NV LNOHLIM HOSS3004d
LSY3T LV HLIM H0SS3004d

US 9,483,374 B2

1
PSMI USING AT-SPEED SCAN CAPTURE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application is a U.S. National Phase Applica-
tion under 35 U.S.C. §371 of International Application No.
PCT/US2011/066656, filed Dec. 21, 2011, entitled PSMI
USING AT-SPEED SCAN CAPTURE.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

TECHNICAL FIELD

The subject matter described herein relates generally to
the field of computing, and more particularly, to systems and
methods for implementing and using PSMI (Periodic Sys-
tem Management Interrupt) using at-speed scan capture.

BACKGROUND

The subject matter discussed in the background section
should not be assumed to be prior art merely as a result of
its mention in the background section. Similarly, a problem
mentioned in the background section or associated with the
subject matter of the background section should not be
assumed to have been previously recognized in the prior art.
The subject matter in the background section merely repre-
sents different approaches, which in and of themselves may
also correspond to embodiments of the claimed subject
matter.

An essential component of any silicon validation program
is the capability to quickly and efficiently reproduce system
failures on the RTL model (register-transfer level model) of
the chip under test, in the case of a logic issue, or on the
tester, in the case of a circuit issue. The major problem of
reproduction is to ensure that silicon behavior on the system
is absolutely synchronized with that of the RTL model tester.
This is because most failures occur far beyond the reset
point. The reset point presents a known state, for example,
at the beginning of test, but information within the processor
arrays and registers (e.g., caches, TLBs (Translation looka-
side buffers), branch predictors, etc.), change during the
course of the test, and differ at the failure point from the reset
point. With conventional mechanisms, a “dump” of many,
but not all, information states is available at the failure point,
but it is completely unknowable what the information states
are for intermediate periods between the start of test and the
failure point.

Debugging post-silicon system failures within guaranteed
time duration is a major challenge. Even with increasing
focus on debug methods, it still requires several experts to
be available for the duration of the debug. The experts
themselves are rare resource due to their skill set, and thus,
sufficient expert resources may be unobtainable to debug all
errors during an acceptable period of time.

Improved visibility and debug methodologies and tools
are needed to improve debug times, reduce the level of

10

20

30

40

45

50

55

65

2

expertise needed to perform post-silicon system failures, and
improve the capability to diagnose and root case failures.

The present state of the art may therefore benefit from
systems and methods for implementing and using PSMI
using at-speed scan capture as described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example, and not
by way of limitation, and will be more fully understood with
reference to the following detailed description when con-
sidered in connection with the figures in which:

FIG. 1 illustrates a chart having various options in accor-
dance with the disclosed embodiments;

FIG. 2 illustrates an exemplary architecture in which
embodiments may operate;

FIG. 3 illustrates an exemplary time chart in accordance
with which embodiments may operate;

FIG. 4 is a flow diagram illustrating a method for imple-
menting and using PSMI using at-speed scan capture in
accordance with described embodiments;

FIG. 5 illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system, in
accordance with one embodiment;

FIG. 6 is a block diagram of a computer system according
to one embodiment;

FIG. 7 is a block diagram of a computer system according
to one embodiment;

FIG. 8 is a block diagram of a computer system according
to one embodiment;

FIG. 9 depicts a tablet computing device and a hand-held
smartphone each having a circuitry integrated therein as
described in accordance with the embodiments;

FIG. 10 is a block diagram of an embodiment of tablet
computing device, a smart phone, or other mobile device in
which touchscreen interface connectors are used;

FIG. 11 is a block diagram of an IP core development
system according to one embodiment;

FIG. 12 illustrates an architecture emulation system
according to one embodiment; and

FIG. 13 illustrates a system to translate instructions
according to one embodiment.

DETAILED DESCRIPTION

Described herein are systems and methods for implement-
ing and using PSMI using at-speed scan capture.

For example, in one embodiment, such a system includes
an input signal capture device to capture input signals input
to a silicon processor under test; a scan capture device to
capture a scan snapshot representing a known state of a
plurality of digital elements integrated within the silicon
processor under test, each having state data for the silicon
processor under test; a scan read-out device to communicate
the captured scan snapshot to a storage point physically
external from the silicon processor under test; and a model
of' the silicon processor under test to replay a subset of a test
sequence for the silicon processor under test based at least
in part on the captured input signals and the captured scan
snapshot.

Strict PSMI (Periodic System Management Interrupt),
without the use of at-speed scan capture, requires bringing
the silicon, such as a silicon processor under test, into a
completely known and reproducible state, referred to as a
syncpoint. Trace capture of the required chip input and
boundary signals are stored, and then an equivalent pre-
silicon model is jumpstarted to attain the same syncpoint,

US 9,483,374 B2

3

and the input traces are applied. If all components function
correctly, then a failure mode on the silicon induced via a
test sequence can be cycle accurately reproduced in pre-
silicon using the equivalent pre-silicon model.

Unfortunately, PSMI as a planned debug tool is getting
increasingly complicated and costlier to make PSMI work
reliably. Products targeting new market segments do not
always support PSMI because of the complexities involved
in current PSMI flows.

DFT (Design for Test) scan methods enable at-speed scan
capture of functional flops and latches to scan latches
without being destructive into the scan behavior. The scan
latches can be readout through a TAP (Test Access Port) after
the failure mode induced by a test sequence, sometimes
referred to as iScan SCB observe.

Use of at-speed scan capture for PSMI flows may help to
reliably attain a PSMI syncpoint with less effort. For
example, during PSMI syncpoints, a trigger may be used to
initiate an at-speed scan capture of functional flops and
latches to scan latches. Notably, the triggered at-speed scan
capture captures the state data for the functional flops and
latches into the scan latches without being destructive to the
test sequence. Thus, the test sequence may recommence
after the at-speed scan capture. After the failure mode on the
silicon processor under test, the scan latches can then be read
out through TAP. This scan data can then be used in several
means to aid with attaining a PSMI syncpoint in replay.
Although on-die RAMs (Random Access Memories),
SRAMs (Static RAMs) and/or Register Files (arrays) may
not have scan support, PSMI methods may nevertheless be
utilized to capture their state data to produce a known state.
Trace capture, pre-silicon simulation and/or emulation mod-
eling, and determinism across variable latency paths and
other components may be conducted with current PSMI
capabilities and other known mechanisms.

The systems, methods, and mechanisms disclosed herein
may improve debugging of failures on a silicon processor
under test using a pre-silicon model. For instance, using
conventional mechanisms, most failures must be debugged
by experts using manual methods with DFT (Design For
Test) or special debug hooks. Some CPU segments use
PSMI to reproduce post-silicon failures in a pre-silicon
model. Nevertheless, reliably enabling PSMI presents at
least the following challenges: (1) PSMI requires compre-
hensive treatment of all the state elements in the chip, which
may be achieved by reviews and exhaustive pre-silicon
validation; (2) PSMI flows require a complex PSMI handler
to do necessary state exposing, quiescing of the system’s
silicon processor under test to attain PSMI syncpoint; (3)
PSMI requires a BIOS equivalent to initialize the system’s
silicon processor under test in emulation during replay; and
(4) significant effort is spent in ensuring that an emulation
environment model of the silicon processor under test sup-
ports any legally valid post-silicon configuration.

Practice of the disclosed embodiments utilizes at-speed
scan capture to attain a PSMI syncpoint. Practice of the
disclosed embodiments may therefore reduce the effort to
validate that the chip can be brought into a known and
reproducible state by improving the manner in which a
PSMI syncpoint is attained, which is then utilized for
pre-silicon validation. Practice of the disclosed embodi-
ments may further remove complexity from a PSMI handler
by avoiding expose and load of control and status registers
which in turn reduces the intrusiveness of the PSMI flow by
exposing less state of the silicon processor under test.
Further still, dependency is reduced on the pre-silicon emu-
lation environment by loading the data from scan capture

5

10

15

20

25

30

35

40

45

50

55

60

65

4

only at syncpoint on to the design via, for example, an
equivalent model of the silicon processor under test and
PSMI divergence debug is eased by making use of the state
captured using scan.

In accordance with one embodiment, during a PSMI
collect flow, every PSMI syncpoint will trigger at-speed
capture of functional flops and latches on to available scan
latches. After a failure mode is induced by a test sequence
run against the silicon processor under test, the scan data
will be read out through a TAP (Test Access Port). The scan
data may thus be extracted and used in replay within an
equivalent model of the silicon processor under test depend-
ing on the extent of scan coverage. Some PSMI replay flows
can be performed without using scan data. In cases of
divergence, information from scan data may be used to
speedup divergence debug, for example, by jumpstarting to
a syncpoint, and thus, bypassing much of the replay of the
test sequence within the model.

PSMI handlers and other firmware may provide about
60% to 80% of coverage via handler runtime and develop-
ment time and utilize information from the scan to ensure
that visibility for the remaining coverage not exposed via
PSMI handlers is visible within the model at replay.

Practice of the disclosed embodiments may drastically
reduce the effort involved in reliably reproducing post-
silicon system failures in pre-silicon models, and hence
increase debug throughput. On designs where PSMI is
already available, practice of the disclosed embodiments
reduces the PSMI development and validation effort; sim-
plifies the PSMI handler and minimizes intrusion due to
PSMI; provides a more reliable work around for PSMI
determinism issues; and enables early success of PSMI
during the post-silicon cycle. Practice of the disclosed
embodiments may therefore make it simpler to make PSMI
available on designs without PSMI by using existing scan
techniques, trace capture infrastructure, pre-silicon models,
and a means to quiesce the system.

Practice of the disclosed embodiments may provide better
total scan coverage. For instance, much effort is spent in
bringing up a replay environment to the same configuration
as that of platform having the actual silicon processor under
test. Bring up the replay environment creates challenges in
having a BIOS like equivalent for pre-silicon replay and
ensuring that the replay environment (typically emulation
but sometimes simulation or a combination of both) supports
any platform configuration. Practice of the disclosed
embodiments therefore enable replay platforms to have a
very simple BIOS and replay environment to bring-up the
replay in a simple fixed configuration, reach PSMI syncpoint
and then load scan data onto the design only at syncpoint.
Since traces are used to drive back after replay, the replay
environment does not even require support for the respective
platform configuration. Test platform systems may employ
means to (a) fully quiesce the system (b) capture traces as
input signals to the silicon processor under test; and (c)
provide a pre-silicon model, without necessarily requiring
special treatment for PSMI syncpoints. In such cases, PSMI
may still be employed as a debug tool with very little added
cost and effort.

The extent of flops and latches covered by a scan is a
crucial parameter with respect to coverage and visibility. By
suitably deciding on the scan coverage, practice of the
disclosed embodiments may be used even if systems have
much less than 100% scan coverage. For example, because
the silicon processor under test may need to be quiesced to
bring some of the arrays to a known state, a significant
portion of flops and latches may get to known state by virtue

US 9,483,374 B2

5

of the quiesce phase and thus, it may not be necessary to
have scan coverage for such flops and latches. Even where
the DFT, power good, and reset related functional blocks
(fubs) don’t have scan, practice of the disclosed embodi-
ments may still be made to work by appropriately deciding
when to capture state and trace. For example, by ensuring
that between a last captured syncpoint and failure mode for
the silicon processor under test, there are no reset or unsup-
ported events which may otherwise yield less than 100%
coverage.

Practice of the disclosed embodiments may drastically
increase post-silicon system debug throughput, for example,
by employing the disclosed systems and methods with
projects where the scan capture can be done at run-time, thus
significantly increasing the success of PSMI where imple-
mented, reducing the development and validation cost, and
allowing PSMI mechanisms to be extended to segments
where they were not previously possible.

For example, consider when you cut the silicon back in
the lab. When running test content on the silicon and a
failure is encountered, debug must be performed. The closer
to launch of the silicon, the less time and resources may be
applied to fully debug the failure mode. Debug is simplified
if you can reproduce the failure mode in a model of the
pre-silicon environment. For example, if'a chip has 1 million
flops (e.g., digital logic and latches) and you have visibility
to the behavior to each and every flop, then it will be is easier
to debug the failure mode if you have the behavior of the one
million flops over the last few milliseconds of real-time
preceding the failure on the silicon processor under test.
Even knowing the behavior of a large percentage of the flops
for the 1 millisecond before the failure will greatly simplify
the debug effort because the root cause is likely to be in the
last moments of processing the test sequence on the silicon
processor under test preceding the failure mode.

Nevertheless, conventional techniques do not provide
visibility for the slice of time leading up to the failure mode.
Thus, conventional techniques involve checking the value of
all the one million flops right at the failure provided as a scan
output data dump. Unfortunately, this provides only one
time instance at the moment of failure, and gives nothing for
the time leading up to the failure. Debug thus requires
experts to go in and debug the failure mode with only very
limited information.

Thus, improved mechanisms are necessary to provide
visibility into the functional flops and digital elements of the
silicon processor under test and to provide visibility into
behavior of the silicon processor during the moments pre-
ceding a failure mode.

In the following description, numerous specific details are
set forth such as examples of specific systems, languages,
components, etc., in order to provide a thorough understand-
ing of the various embodiments. It will be apparent, how-
ever, to one skilled in the art that these specific details need
not be employed to practice the disclosed embodiments. In
other instances, well known materials or methods have not
been described in detail in order to avoid unnecessarily
obscuring the disclosed embodiments.

In addition to various hardware components depicted in
the figures and described herein, embodiments further
include various operations which are described below. The
operations described in accordance with such embodiments
may be performed by hardware components or may be
embodied in machine-executable instructions, which may be
used to cause a general-purpose or special-purpose proces-
sor programmed with the instructions to perform the opera-
tions. Alternatively, the operations may be performed by a

10

15

20

25

30

35

40

45

50

55

60

65

6

combination of hardware and software, including software
instructions that perform the operations described herein via
memory and one or more processors of a computing plat-
form.

Embodiments also relate to a system or apparatus for
performing the operations herein. The disclosed system or
apparatus may be specially constructed for the required
purposes, or it may comprise a general purpose computer
selectively activated or reconfigured by a computer program
stored in the computer. Such a computer program may be
stored in a non-transitory computer readable storage
medium, such as, but not limited to, any type of disk
including floppy disks, optical disks, flash, NAND, solid
state drives (SSDs), CD-ROMs, and magnetic-optical disks,
read-only memories (ROMs), random access memories
(RAMs), EPROMs, EEPROMs, magnetic or optical cards,
or any type of media suitable for storing non-transitory
electronic instructions, each coupled to a computer system
bus. In one embodiment, a non-transitory computer readable
storage medium having instructions stored thereon, causes
one or more processors within a system to perform the
methods and operations which are described herein. In
another embodiment, the instructions to perform such meth-
ods and operations are stored upon a non-transitory com-
puter readable medium for later execution.

The algorithms and displays presented herein are not
inherently related to any particular computer or other appa-
ratus nor are embodiments described with reference to any
particular programming language. It will be appreciated that
a variety of programming languages may be used to imple-
ment the teachings of the embodiments as described herein.

Refer to FIG. 1 which illustrates a chart 100 having
various options in accordance with the disclosed embodi-
ments. For example, the chart 100 shows the use of at-speed
scan captures in conjunction with PSMI capability. Benefits
110 may include low cost and early PSMI. For example, at
block 111, a simpler PSMI handler results from having only
to quiesce flows where necessary, providing minimal or no
state expose, and causing reduced intrusion and bugs. At
block 112, reduced PSMI validation effort is required
through minimal PSMI determinism validation and use of
existing functional features.

At block 105, reproducing a failure in silicon with PSMI
may include block 106 to rerun a test sequence with PSMI
injection; block 107 in which every PSMI syncpoint triggers
an at-speed scan capture of functional flops and latches to
scan latches; block 108 in which a failure trigger (e.g., at a
failure mode of the silicon processor under test) dumps scan
data to TAP; and at block 109 use of PSMI trace capture.
Flow then proceeds to block 120 showing options to repro-
duce failure in pre-silicon environment, in which inputs
include scan data, trace (e.g., signals), and state expose.

At option block 130, a high scan coverage is depicted and
lesser pre-silicon model dependencies are required. At block
131 jumpstarting replay for a fixed working configuration; at
block 132 use of minimal PSMI replay flow to reach a
syncpoint; and at block 133 overload all scan data onto
design (e.g., a model of the silicon processor under test) at
syncpoint.

At option block 140, a high control register scan coverage
is depicted and reduced state expose is required. At block
141 extract control registers from scan data; at block 142 use
extracted information to jumpstart replay; and at block 143
use PSMI replay flows to reproduce the failure mode within
the model.

At option block 150, a low scan coverage is depicted and
faster divergence debug is provided. At block 151 perform

US 9,483,374 B2

7

jumpstart and PSMI replay and at block 152 use scan data
to speed up divergence debug.

FIG. 2 illustrates an exemplary architecture 200 in which
embodiments may operate. For example, system 200 depicts
an input signal capture device at elements 230A and 230B to
capture the input signals 210 input or applied into the silicon
processor under test 205. A scan capture device 245 captures
a scan snapshot 220 representing a known state of a plurality
of digital elements 290 integrated within the silicon proces-
sor under test 205, each having state data for the silicon
processor under test 205. A scan read-out device, such as the
external interface 225 communicates the captured scan
snapshot 220 to a storage point 215 physically external from
the silicon processor under test 205. And a model 250 of the
silicon processor under test 205 replays a subset of a test
sequence 265 for the silicon processor under test 205 based
at least in part on the captured input signals 210 and the
captured scan snapshot 220.

As depicted, the input signal capture device includes a
logic analyzer 230B to capture the input signals 210 applied
to the silicon processor under test 205 in accordance with
one embodiment. In an alternative embodiment, the input
signal capture device includes one or more on-die logic
components 230A integrated with the silicon processor
under test 205 to capture the input signals 210 into the
silicon processor under test 205.

In one embodiment, the model 250 of the silicon proces-
sor under test 205 replays the subset of the test sequence 265
external to and physically separate from the silicon proces-
sor under test 205. For example, as shown, the model 250 is
a design representation of the silicon processor under test
205, but is distinct from it, and operates separately from the
silicon processor under test 205.

In one embodiment, the model 250 of the silicon proces-
sor under test 205 produces a cycle accurate representation
of the subset of the test sequence 265 for the silicon
processor under test 205 within the model 250. For example,
the model 250 behaves on a cycle by cycle basis as though
it was the actual silicon processor under test 205. In one
embodiment, the model 250 of the silicon processor under
test 205 includes a simulator 260 implemented in software,
an emulator 255 implemented via, for example, a field-
programmable gate array (FPGA) integrated circuit, or a
combination of both the simulator 260 and the emulator 255.

In one embodiment, the scan capture device 245 includes
an at-speed scan capture device to trigger an at speed capture
of functional flops and latches within the silicon processor
under test 205 onto scan latches within the silicon processor
under test 205. For example, the functional flops and latches
may be one or more of the digital elements 290 within the
silicon processor under test 205. Similarly, the scan latches
within the silicon processor under test 205 may write to one
or more of the digital elements 290.

In one embodiment, the at-speed scan capture device 245
captures the functional flops and latches onto the scan
latches without altering state data within the functional flops
and latches and without requiring termination of the test
sequence 265. In accordance with one embodiment, the
silicon processor under test 205 recommences the test
sequence 265 on the silicon processor under test 205 after
the capture of the functional flops and latches onto the scan
latches. In such an embodiment, the scan read-out device
further includes a test access port (TAP) to communicate the
captured scan snapshot 220 to a storage point 215 physically
external from the silicon processor under test 205 after
termination of the test sequence 265 due to a failure mode
of the silicon processor under test 205. For example, the

5

10

15

20

25

30

40

45

50

55

60

8

at-speed scan capture may trigger and run during the test
sequence, yet refrain from outputting the captured scan data
for the duration of the test sequence. Only after a failure
mode is reached does the TAP or other external interface
communicate the captured scan snapshot to an external
storage point 215.

In one embodiment, the scan read-out device includes or
is implemented via an external interface 225 which extracts
the captured scan snapshot 220 from the silicon processor
under test 205 to the storage point 215 physically external
from the silicon processor under test 205. In one embodi-
ment, the input signal capture device includes an external
interface 225 to further communicate the captured input
signals 210 to a storage point 215 physically external from
the silicon processor under test 205 for persistent storage
and later retrieval.

In one embodiment, the scan capture device 245 includes:
(a) an at-speed scan capture device to trigger an at speed
capture of functional flops and latches within the silicon
processor under test 205 onto scan latches within the silicon
processor under test 205; and further includes (b) a quiesce
unit 275 to quiesce the silicon processor under test 205 to
train and invalidate SRAMs (Static Random Access Memo-
ries) internal to the silicon processor under test 205.

In one embodiment, a quiesce unit 275 captures state data
of the respective SRAMs. For example, in one embodiment,
the scan capture device 245 captures the scan snapshot 220
by stopping the clock and initiating a single clock pulse
triggering the capture of the scan snapshot 220 from a
present state to the captured state for the scan snapshot 220
representing the known state of a plurality of digital ele-
ments 290 integrated within the silicon processor under test
205. In one embodiment, the quiesce unit 275 quiesces the
silicon processor under test 205 before the scan snapshot
220 is captured.

For example, when using iScan SCB observe to perform
a snapshot from the original flop to the scan flop, it may be
necessary to stop the clocks first. Once stopped, a single
clock pulse is created to go and perform the snapshot from
the original flop to the scan flop. On the trigger, such as an
injected interrupt or other event, the clock is stopped, a clock
pulse is created to capture the value from original to the
scan, and then using the TAP interface the scan is extracted.

In one embodiment, the silicon processor under test 205
performs one or more of the following operations during a
quiesce phase responsive to the quiesce unit 275: (a) stop
accepting new requests; (b) waiting for all prior requests to
complete; (c) invalidating a first plurality of on-die SRAMs
(Static Random Access Memories) due to entry into the
quiesce phase; (d) flushing a second plurality of on-die
SRAMs to an invalid state responsive to a flush instruction
initiated during the quiesce phase; (e) invalidating a first
plurality of flip-flop and latch circuits internal to the silicon
processor under test 205 due to entry into the quiesce phase;
and (f) copying state data from a second plurality of flip-flop
and latch circuits internal to the silicon processor under test
205 into a corresponding plurality of shadow flops, in which
each of the shadow flops preserve the copied state data as
known state data for the corresponding second plurality of
flip-flop and latch circuits. Where data is invalidated or
made to an invalid state due to a flush, training event, or
simply due to inactivity, the state data for the corresponding
digital element 290 is at a known state, which happens to be
an invalid state. Conversely, other digital elements 290 do
not invalidate or cannot appropriately be invalidated, such as
counters, and thus, their values must be copied, for example,
to shadow flops.

US 9,483,374 B2

9

In one embodiment, the plurality of digital elements 290
integrated within the silicon processor under test 205
includes digital elements 290 selected from the group
including: flip-flop circuits, each having state data in the
silicon processor under test 205; latch circuits, each having
state data in the silicon processor under test 205; and on-die
cache SRAMs (Static Random Access Memories) having
memory to store state data within the silicon processor under
test 205.

For example, a flip-flop or latch is a circuit that has two
stable states and can be used to store state information. The
circuit can be made to change state by signals applied to one
or more control inputs and will have one or two outputs.
Flip-flops and latches are basic storage elements in sequen-
tial logic, digital electronics systems for computers, com-
munications, and many other types of systems.

Other digital elements may exist and operate internal to
the silicon processor under test 205, but may not necessarily
have state data stored therein, and thus, do not require
operations to capture any state data. For example, a logic
gate implements a Boolean function performing a logical
operation on one or more logic inputs and producing a single
logic output. Nevertheless, once performed, such digital
elements 290 do not maintain state data which requires
handling to capture via PSMI or at-speed scan capture or
otherwise.

FIG. 3 illustrates an exemplary time chart 300 in accor-
dance with which embodiments may operate. Depicted at
element 315 is the duration of a test sequence 265 which
exists from time t; through time t,. For example, in one
embodiment, time t; represents a start or beginning of the
test sequence 325. In such an embodiment, time t,, represents
a termination 330 of the test sequence 265. For example, the
termination of the test sequence at time t, 330 may occur at
a failure mode of the silicon processor under test 205
induced by the test sequence 265.

In one embodiment, the scan capture device 245 captures
the scan snapshot 220 for the silicon processor under test
205 at an intermediate time t, ; 335 during a duration of a
test sequence 315 from time t; 325 to time t, 330. In one
embodiment, the intermediate time t,_; 335 occurs after the
start or beginning of the test sequence 325 at time t, and
before the failure mode (e.g., termination 330) of the silicon
processor under test 205 at time t,,.

In one embodiment, the scan capture device 245 repeti-
tively captures the scan snapshot 220 on a recurring periodic
basis during the duration of the test sequence 265 from time
t, (e.g., beginning at 325) to time t,, (e.g., termination 330).
For example, within the duration of the test sequence on
silicon 315, several intermediate times are depicted, includ-
ing: intermediate time 345 at time t,, intermediate time 340
at time t;, and intermediate time t,, ; 335 corresponding to
time t,. In such an embodiment, a scan capture is triggered
at each of intermediate times 345, 340, and 335, however,
the scan capture may be extracted only once. For example,
a periodic interrupt may be injected into the test sequence at
intervals, such as 5 ms or 100 ms, etc. On that interval, the
test sequence is interrupted and a scan capture is triggered,
but not necessarily extracted or communicated external to
the silicon processor under test.

In one embodiment, a last captured scan snapshot 220
preceding a failure mode corresponding to the termination
330 of the test sequence 265 corresponds to the scan
snapshot 220 at time t,,_; (e.g., intermediate time 335 which
is the last intermediate time preceding the failure mode at
termination 330). Thus, it may not be known precisely when
the duration of the test sequence on the silicon 315 will end,

10

15

20

25

30

35

40

45

50

55

60

65

10

however, through the periodic interrupts at the intermediate
times 345, 340, and 335, it can ensured that a scan capture
is at a maximum, captured no more in the past than the
duration of the repeating interval. For example, if the
interval is 100 ms for repetitive scan captures, then a last
captured scan snapshot, such as intermediate time 335 at
time t,_; cannot, by definition, be more than 100 ms in the
past, and so forth for other time durations.

In one embodiment, the model 250 of the silicon proces-
sor under test 205 replays the subset of the test sequence 265
(e.g., a subset of the duration of the test sequence on silicon
depicted by element 315) from time t,_, (e.g., intermediate
time 335) through time t,, at the termination 330 or failure
mode.

In one embodiment, the model 250 replaying the subset of
the test sequence 265 includes performing the following
operations: (a) jumpstart the model 250 of the silicon
processor under test 205 to a syncpoint using the last
captured scan snapshot 220 preceding the failure mode
corresponding to the termination 330 of the test sequence
265 at time t, , for example, at intermediate time 335
immediately preceding termination; (b) apply the captured
input signals 210 to the model 250 of the silicon processor
under test 205 starting from time t,,_, at intermediate time
335; and (c) replay the subset of the test sequence 265 for the
silicon processor under test 205 from time t,_; at interme-
diate time 335 through time t,, at termination 330.

For example, element 320 depicts replaying a subset of
the test sequence on the model from time t,,_, through time
t,,. This is accomplished by jumpstarting the test sequence at
a captured syncpoint and applying the input signals to the
model as set forth at element 350. Emulation or simulation
or both then replay cycle accurately the test sequence from
time t,,, through time t,, on the model, and at time t, the
failure mode is arrived at through the emulation and/or
simulation as is set forth at element 355.

In one embodiment, time t, occurs at termination 330 of
the test sequence 265 for the silicon processor under test 205
due to a failure mode induced from the test sequence 265. In
such an embodiment, all changes to state data of the digital
elements 290 integrated within the silicon processor under
test 205 are viewable within the model 250 of the silicon
processor under test 205 from time t,,_; at intermediate time
335 through time t,, at termination 330.

In one embodiment, the input signal capture device
includes a logic analyzer 230B or one or more on-die logic
components integrated with the silicon processor under test
205, or a combination of the logic analyzer 230B and the one
or more on-die logic components to capture the input signals
210 as applied to the silicon processor under test 205. In
such an embodiment, the input signal capture device cap-
tures the input signals 210 as applied to the silicon processor
under test 205 on each and every cycle of the silicon
processor under test 205 for the duration of a test sequence
315 from time t; 325 to time t,, at termination 330.

In one embodiment, the silicon processor under test
includes a central processing unit for one of a tablet com-
puting device or a smart phone.

In one embodiment, a non-transitory computer readable
storage medium has instructions stored thereon. When
executed by a system, the instructions cause the system to
perform operations including: capturing input signals
applied to a silicon processor under test; capturing a scan
snapshot representing a known state of a plurality of digital
elements integrated within the silicon processor under test,
each having state data for the silicon processor under test;
storing the captured input signals and the captured scan

US 9,483,374 B2

11

snapshot to a storage point physically external from the
silicon processor under test; jumpstarting a model of the
silicon processor under test with the captured scan snapshot;
and replaying a subset of a test sequence of silicon processor
under test within the model of the silicon processor under
test by applying the captured input signals to the model of
the silicon processor under test from time t,,_; through time
t,,. In such an embodiment, time t,, occurs at termination of
the test sequence for the silicon processor under test due to
a failure mode induced from the test sequence.

In one embodiment, performing the operations for cap-
turing the scan snapshot representing a known state of a
plurality of digital elements integrated within the silicon
processor under test includes: (a) performing an at-speed
scan capture of functional flops and latches within the
silicon processor under test onto scan latches within the
silicon processor under test; (b) quiescing the silicon pro-
cessor under test to train and invalidate SRAMs (Static
Random Access Memories) internal to the silicon processor
under test; (c) capturing state data of the respective SRAMs
after quiescing the silicon processor under test; (d) recom-
mencing the test sequence after both of performing the
at-speed scan capture and capturing state data of the respec-
tive SRAMs. In one embodiment, storing the captured scan
snapshot to the storage point physically external from the
silicon processor under test includes extracting the scan
snapshot via an external interface after termination of the
test sequence at time t,.

FIG. 4 is a flow diagram 400 illustrating a method for
implementing and using PSMI using at-speed scan capture
in accordance with described embodiments. Method 400
may be performed by processing logic that may include
hardware (e.g., circuitry, dedicated logic, programmable
logic, microcode, etc.), software (e.g., instructions run on a
processing device to perform the methodologies and opera-
tions described herein. Some of the blocks and/or operations
of method 400 are optional in accordance with certain
embodiments. The numbering of the blocks presented is for
the sake of clarity and is not intended to prescribe an order
of operations in which the various blocks must occur.

Method 400 begins with processing logic for capturing
input signals applied to a silicon processor under test (block
405).

At block 410, processing logic captures a scan snapshot
representing a known state of a plurality of digital elements
integrated within the silicon processor under test.

At block 415, processing logic performs an at-speed scan
capture of functional flops and latches within the silicon
processor under test onto scan latches within the silicon
processor under test.

At block 420, processing logic quiesces the silicon pro-
cessor under test to train and invalidate SRAMs internal to
the silicon processor under test.

At block 425, processing logic captures state data of the
respective SRAMs after quiescing the silicon processor
under test.

At block 430, processing logic recommences the test
sequence after both of performing the at-speed scan capture
and capturing state data of the respective SRAMs.

At block 435, processing logic extracts the scan snapshot
via an external interface after termination of the test
sequence.

At block 440, processing logic stores the captured input
signals and the captured scan snapshot to a storage point
physically external from the silicon processor under test.

At block 445, processing logic jumpstarts a model of the
silicon processor under test with the captured scan snapshot.

10

15

20

25

30

35

40

45

50

55

60

65

12

At block 450, processing logic replays a subset of a test
sequence of silicon processor under test within the model of
the silicon processor under test by applying the captured
input signals.

At block 455, a user diagnoses the failure mode via the
model of the silicon processor under test.

FIG. 5 illustrates a diagrammatic representation of a
machine 500 having a silicon process under test in the
exemplary form of a computer system, in accordance with
one embodiment, within which a set of instructions, for
causing the machine/computer system 500 to perform any
one or more of the methodologies discussed herein, may be
executed. In alternative embodiments, the machine may be
connected (e.g., networked) to other machines in a Local
Area Network (LAN), an intranet, an extranet, or the Inter-
net. The machine may operate in the capacity of a server or
a client machine in a client-server network environment, as
a peer machine in a peer-to-peer (or distributed) network
environment, as a server or series of servers within an
on-demand service environment. Certain embodiments of
the machine may be in the form of a personal computer (PC),
a tablet PC, a smart phone, a set-top box (STB), a Personal
Digital Assistant (PDA), a cellular telephone, a web appli-
ance, a server, a network router, switch or bridge, computing
system, or any machine capable of executing a set of
instructions (sequential or otherwise) that specify actions to
be taken by that machine. Further, while only a single
machine is illustrated, the term “machine” shall also be
taken to include any collection of machines (e.g., comput-
ers) that individually or jointly execute a set (or multiple
sets) of instructions to perform any one or more of the
methodologies discussed herein.

The exemplary computer system 500 includes a silicon
processor under test 502, a main memory 504 (e.g., read-
only memory (ROM), flash memory, dynamic random
access memory (DRAM) such as synchronous DRAM
(SDRAM) or Rambus DRAM (RDRAM), etc., static
memory such as flash memory, static random access
memory (SRAM), volatile but high-data rate RAM, etc.),
and a secondary memory 518 (e.g., a persistent storage
device including hard disk drives), which communicate with
each other via a bus 530. Main memory 504 includes a
quiesce unit 524 to trigger and coordinate a quiesce phase
within the silicon processor under test 502. The silicon
processor under test 502 operates in conjunction with the
processing logic 526 to perform the methodologies dis-
cussed herein. In one embodiment the silicon processor
under test 502 utilizes a signal capture 525 internal to the
silicon processor under test 502 to capture input signals.

The computer system 500 may further include a network
interface card 508. The computer system 500 also may
include a user interface 510 (such as a video display unit, a
liquid crystal display (LCD), or a cathode ray tube (CRT)),
an alphanumeric input device 512 (e.g., a keyboard), a
cursor control device 514 (e.g., a mouse), and a signal
generation device 516 (e.g., an integrated speaker). The
computer system 500 may further include peripheral device
536 (e.g., wireless or wired communication devices,
memory devices, storage devices, audio processing devices,
video processing devices, etc.).

The secondary memory 518 may include a non-transitory
machine-readable or computer readable storage medium 531
on which is stored one or more sets of instructions (e.g.,
software 522) embodying any one or more of the method-
ologies or functions described herein. The software 522 may
also reside, completely or at least partially, within the main
memory 504 and/or within the silicon processor under test

US 9,483,374 B2

13

502 during execution thereof by the computer system 500.
The software 522 may further be transmitted or received
over a network 520 via the network interface card 508.

Referring now to FIG. 6, shown is a block diagram of a
system 600 in accordance with one embodiment of the
present invention. The system 600 may include one or more
processors 610, 615, which are coupled to graphics memory
controller hub (GMCH) 620. The optional nature of addi-
tional processors 615 is denoted in FIG. 6 with broken lines.

Each processor 610, 615 may be some version of the
silicon processor under test 502. However, it should be noted
that it is unlikely that integrated graphics logic and inte-
grated memory control units would exist in the processors
610, 615. FIG. 6 illustrates that the GMCH 620 may be
coupled to a memory 640 that may be, for example, a
dynamic random access memory (DRAM). The DRAM
may, for at least one embodiment, be associated with a
non-volatile cache.

The GMCH 620 may be a chipset, or a portion of a
chipset. The GMCH 620 may communicate with the pro-
cessor(s) 610, 615 and control interaction between the
processor(s) 610, 615 and memory 640. The GMCH 620
may also act as an accelerated bus interface between the
processor(s) 610, 615 and other elements of the system 600.
For at least one embodiment, the GMCH 620 communicates
with the processor(s) 610, 615 via a multi-drop bus, such as
a frontside bus (FSB) 695.

Furthermore, GMCH 620 is coupled to a display 645
(such as a flat panel or touchscreen display). GMCH 620
may include an integrated graphics accelerator. GMCH 620
is further coupled to an input/output (I/O) controller hub
(ICH) 650, which may be used to couple various peripheral
devices to system 600. Shown for example in the embodi-
ment of FIG. 6 is an external graphics device 660, which
may be a discrete graphics device coupled to ICH 650, along
with another peripheral device 670.

Alternatively, additional or different processors may also
be present in the system 600. For example, additional
processor(s) 615 may include additional processors(s) that
are the same as processor 610, additional processor(s) that
are heterogeneous or asymmetric to processor 610, accel-
erators (such as, e.g., graphics accelerators or digital signal
processing (DSP) units), field programmable gate arrays, or
any other processor. There can be a variety of differences
between the physical resources 610, 615 in terms of a
spectrum of metrics of merit including architectural, micro-
architectural, thermal, power consumption characteristics,
and the like. These differences may effectively manifest
themselves as asymmetry and heterogeneity amongst the
processors 610, 615. For at least one embodiment, the
various processors 610, 615 may reside in the same die
package.

Referring now to FIG. 7, shown is a block diagram of a
second system 700 in accordance with an embodiment of the
present invention. As shown in FIG. 7, multiprocessor
system 700 is a point-to-point interconnect system, and
includes a first processor 770 and a second processor 780
coupled via a point-to-point interconnect 750. Each of
processors 770 and 780 may be some version of the pro-
cessor 500 as one or more of the processors 610, 615.

While shown with only two processors 770, 780, it is to
be understood that the scope of the present invention is not
so limited. In other embodiments, one or more additional
processors may be present in a given processor.

Processors 770 and 780 are shown including integrated
memory controller units 772 and 782, respectively. Proces-
sor 770 also includes as part of its bus controller units

10

15

20

25

30

35

40

45

50

55

60

65

14

point-to-point (P-P) interfaces 776 and 778; similarly, sec-
ond processor 780 includes P-P interfaces 786 and 788.
Processors 770, 780 may exchange information via a point-
to-point (P-P) interface 750 using P-P interface circuits 778,
788. As shown in FIG. 7, IMCs 772 and 782 couple the
processors to respective memories, namely a memory 732
and a memory 734, which may be portions of main memory
locally attached to the respective processors.

Processors 770, 780 may each exchange information with
a chipset 790 via individual P-P interfaces 752, 754 using
point to point interface circuits 776, 794, 786, 798. Chipset
790 may also exchange information with a high-perfor-
mance graphics circuit 738 via a high-performance graphics
interface 739.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 790 may be coupled to a first bus 716 via an
interface 796. In one embodiment, first bus 716 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O
interconnect bus, although the scope of the present invention
is not so limited.

As shown in FIG. 7, various [/O devices 714 may be
coupled to first bus 716, along with a bus bridge 718 which
couples first bus 716 to a second bus 720. In one embodi-
ment, second bus 720 may be a low pin count (LPC) bus.
Various devices may be coupled to second bus 720 includ-
ing, for example, a keyboard and/or mouse 722, communi-
cation devices 727 and a storage unit 728 such as a disk drive
or other mass storage device which may include instruc-
tions/code and data 730, in one embodiment. Further, an
audio I/O 724 may be coupled to second bus 720. Note that
other architectures are possible. For example, instead of the
point-to-point architecture of FIG. 7, a system may imple-
ment a multi-drop bus or other such architecture.

Referring now to FIG. 8, shown is a block diagram of a
system 800 in accordance with an embodiment of the
present invention. FIG. 8 illustrates that the processors 870,
880 may include integrated memory and 1/O control logic
(“CL”) 872 and 882, respectively and intercommunicate
with each other via point-to-point interconnect 850 between
point-to-point (P-P) interfaces 878 and 888 respectively.
Processors 870, 880 each communicate with chipset 890 via
point-to-point interconnects 852 and 854 through the respec-
tive P-P interfaces 876 to 894 and 886 to 898 as shown. For
at least one embodiment, the CL 872, 882 may include
integrated memory controller units. CLs 872, 882 may
include I/O control logic. As depicted, memories 832, 834
coupled to CLs 872, 882 and I/O devices 814 are also
coupled to the control logic 872, 882. Legacy /O devices
815 are coupled to the chipset 890 via interface 896.

FIG. 9 depicts a tablet computing device 901 and a
hand-held smartphone 902 each having a circuitry integrated
therein as described in accordance with the embodiments.
As depicted, each of the tablet computing device 901 and the
hand-held smartphone 902 include a touch interface 903 and
an integrated processor 904 in accordance with disclosed
embodiments.

FIG. 10 is a block diagram 1000 of an embodiment of
tablet computing device, a smart phone, or other mobile
device in which touchscreen interface connectors are used.
Processor 1010 performs the primary processing operations.
Audio subsystem 1020 represents hardware (e.g., audio
hardware and audio circuits) and software (e.g., drivers,

US 9,483,374 B2

15

codecs) components associated with providing audio func-
tions to the computing device. In one embodiment, a user
interacts with the tablet computing device or smart phone by
providing audio commands that are received and processed
by processor 1010.

Display subsystem 1030 represents hardware (e.g., dis-
play devices) and software (e.g., drivers) components that
provide a visual and/or tactile display for a user to interact
with the tablet computing device or smart phone. Display
subsystem 1030 includes display interface 1032, which
includes the particular screen or hardware device used to
provide a display to a user. In one embodiment, display
subsystem 1030 includes a touchscreen device that provides
both output and input to a user.

/O controller 1040 represents hardware devices and
software components related to interaction with a user. /O
controller 1040 can operate to manage hardware that is part
of audio subsystem 1020 and/or display subsystem 1030.
Additionally, I/O controller 1040 illustrates a connection
point for additional devices that connect to the tablet com-
puting device or smart phone through which a user might
interact. In one embodiment, I/O controller 1040 manages
devices such as accelerometers, cameras, light sensors or
other environmental sensors, or other hardware that can be
included in the tablet computing device or smart phone. The
input can be part of direct user interaction, as well as
providing environmental input to the tablet computing
device or smart phone.

In one embodiment, the tablet computing device or smart
phone includes power management 1050 that manages bat-
tery power usage, charging of the battery, and features
related to power saving operation. Memory subsystem 1060
includes memory devices for storing information in the
tablet computing device or smart phone. Connectivity 1070
includes hardware devices (e.g., wireless and/or wired con-
nectors and communication hardware) and software com-
ponents (e.g., drivers, protocol stacks) to the tablet comput-
ing device or smart phone to communicate with external
devices. Cellular connectivity 1072 may include, for
example, wireless carriers such as GSM (global system for
mobile communications), CDMA (code division multiple
access), TDM (time division multiplexing), or other cellular
service standards). Wireless connectivity 1074 may include,
for example, activity that is not cellular, such as personal
area networks (e.g., Bluetooth), local area networks (e.g.,
WiFi), and/or wide area networks (e.g., WiMax), or other
wireless communication.

Peripheral connections 1080 include hardware interfaces
and connectors, as well as software components (e.g., driv-
ers, protocol stacks) to make peripheral connections as a
peripheral device (“to” 1082) to other computing devices, as
well as have peripheral devices (“from” 1084) connected to
the tablet computing device or smart phone, including, for
example, a “docking” connector to connect with other
computing devices. Peripheral connections 1080 include
common or standards-based connectors, such as a Universal
Serial Bus (USB) connector, DisplayPort including
MiniDisplayPort (MDP), High Definition Multimedia Inter-
face (HDMI), Firewire, etc.

FIG. 11 shows a block diagram illustrating the develop-
ment of IP cores according to one embodiment. Storage
medium 1130 includes simulation software 1120 and/or
hardware or software model 1110. In one embodiment, the
data representing the IP core design can be provided to the
storage medium 1130 via memory 1140 (e.g., hard disk),
wired connection (e.g., internet) 1150 or wireless connection
1160. The IP core information generated by the simulation

10

15

20

25

30

35

40

45

50

55

60

65

16

tool and model can then be transmitted to a fabrication
facility 1165 where it can be fabricated by a 3rd party to
perform at least one instruction in accordance with at least
one embodiment.

In some embodiments, one or more instructions may
correspond to a first type or architecture (e.g., x86) and be
translated or emulated on a processor of a different type or
architecture (e.g., ARM). An instruction, according to one
embodiment, may therefore be performed on any processor
or processor type, including ARM, x86, MIPS, a GPU, or
other processor type or architecture.

FIG. 12 illustrates how an instruction of a first type is
emulated by a processor of a different type, according to one
embodiment. In FIG. 12, program 1205 contains some
instructions that may perform the same or substantially the
same function as an instruction according to one embodi-
ment. However the instructions of program 1205 may be of
a type and/or format that is different or incompatible with
processor 1215, meaning the instructions of the type in
program 1205 may not be able to executed natively by the
processor 1215. However, with the help of emulation logic,
1210, the instructions of program 1205 are translated into
instructions that are natively capable of being executed by
the processor 1215. In one embodiment, the emulation logic
is embodied in hardware. In another embodiment, the emu-
lation logic is embodied in a tangible, machine-readable
medium containing software to translate instructions of the
type in the program 1205 into the type natively executable
by the processor 1215. In other embodiments, emulation
logic is a combination of fixed-function or programmable
hardware and a program stored on a tangible, machine-
readable medium. In one embodiment, the processor con-
tains the emulation logic, whereas in other embodiments, the
emulation logic exists outside of the processor and is pro-
vided by a third party. In one embodiment, the processor is
capable of loading the emulation logic embodied in a
tangible, machine-readable medium containing software by
executing microcode or firmware contained in or associated
with the processor.

FIG. 13 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention.
In the illustrated embodiment, the instruction converter is a
software instruction converter, although alternatively the
instruction converter may be implemented in software, firm-
ware, hardware, or various combinations thereof. FIG. 13
shows a program in a high level language 1302 may be
compiled using an x86 compiler 1304 to generate x86 binary
code 1306 that may be natively executed by a processor with
at least one x86 instruction set core 1316. The processor with
at least one x86 instruction set core 1316 represents any
processor that can perform substantially the same functions
as a Intel processor with at least one x86 instruction set core
by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86
instruction set core or (2) object code versions of applica-
tions or other software targeted to run on an Intel processor
with at least one x86 instruction set core, in order to achieve
substantially the same result as an Intel processor with at
least one x86 instruction set core. The x86 compiler 1304
represents a compiler that is operable to generate x86 binary
code 1306 (e.g., object code) that can, with or without
additional linkage processing, be executed on the processor
with at least one x86 instruction set core 1316. Similarly,
FIG. 13 shows the program in the high level language 1302
may be compiled using an alternative instruction set com-

US 9,483,374 B2

17

piler 1308 to generate alternative instruction set binary code
1310 that may be natively executed by a processor without
at least one x86 instruction set core 1314 (e.g., a processor
with cores that execute the MIPS instruction set of MIPS
Technologies of Sunnyvale, Calif. and/or that execute the
ARM instruction set of ARM Holdings of Sunnyvale,
Calif.). The instruction converter 1312 is used to convert the
x86 binary code 1306 into code that may be natively
executed by the processor without an x86 instruction set
core 1314. This converted code is not likely to be the same
as the alternative instruction set binary code 1310 because
an instruction converter capable of this is difficult to make;
however, the converted code will accomplish the general
operation and be made up of instructions from the alterna-
tive instruction set. Thus, the instruction converter 1312
represents software, firmware, hardware, or a combination
thereof that, through emulation, simulation or any other
process, allows a processor or other electronic device that
does not have an x86 instruction set processor or core to
execute the x86 binary code 1306.

While the subject matter disclosed herein has been
described by way of example and in terms of the specific
embodiments, it is to be understood that the claimed
embodiments are not limited to the explicitly enumerated
embodiments disclosed. To the contrary, the disclosure is
intended to cover various modifications and similar arrange-
ments as would be apparent to those skilled in the art.
Therefore, the scope of the appended claims should be
accorded the broadest interpretation so as to encompass all
such modifications and similar arrangements. It is to be
understood that the above description is intended to be
illustrative, and not restrictive. Many other embodiments
will be apparent to those of skill in the art upon reading and
understanding the above description. The scope of the
disclosed subject matter is therefore to be determined in
reference to the appended claims, along with the full scope
of equivalents to which such claims are entitled.

What is claimed is:

1. A system comprising:

a hardware processor including,

an input signal capture device to capture input signals
input to a silicon processor under test,

a scan capture device to capture a scan snapshot
representing a known state of a plurality of digital
elements integrated within the silicon processor
under test, each having state data for the silicon
processor under test, and

a scan read-out device to communicate the captured
scan snapshot to a storage point physically external
from the silicon processor under test; and

a model of the silicon processor under test to replay a

subset of a test sequence for the silicon processor under

test based at least in part on the captured input signals
and the captured scan snapshot,

wherein the scan capture device comprises an at-speed

scan capture device to trigger an at speed capture of

functional flops and latches within the silicon processor
under test onto scan latches within the silicon processor
under test.

2. The system of claim 1, wherein the model of the silicon
processor under test to replay the subset of the test sequence
for the silicon processor under test comprises the model of
the silicon processor under test to replay the subset of the
test sequence external to and physically separate from the
silicon processor under test.

3. The system of claim 1, wherein the model of the silicon
processor under test to replay the subset of the test sequence

10

15

20

25

30

35

40

45

50

55

60

65

18

for the silicon processor under test comprises the model of
the silicon processor under test to produce a cycle accurate
representation of the subset of the test sequence for the
silicon processor under test within the model.

4. The system of claim 1, wherein the model of the silicon
processor under test comprises a simulator implemented in
software, an emulator implemented via a field-program-
mable gate array (FPGA) integrated circuit, or a combina-
tion of both the simulator and the emulator.

5. The system of claim 1, wherein the at-speed scan
capture device to capture the functional flops and latches
onto the scan latches without altering state data within the
functional flops and latches and without requiring termina-
tion of the test sequence.

6. The system of claim 1, wherein the silicon processor
under test to recommence the test sequence on the silicon
processor under test after the capture of the functional flops
and latches onto the scan latches; and wherein the scan
read-out device comprises a test access port (TAP) to
communicate the captured scan snapshot to a storage point
physically external from the silicon processor under test
after termination of the test sequence due to a failure mode
of the silicon processor under test.

7. The system of claim 1, wherein the scan read-out
device comprises an external interface to extract the cap-
tured scan snapshot from the silicon processor under test to
the storage point physically external from the silicon pro-
cessor under test.

8. The system of claim 1, wherein the scan capture device
comprises:

a quiesce unit to quiesce the silicon processor under test
to train and invalidate SRAMs (Static Random Access
Memories) internal to the silicon processor under test
and wherein the quiesce unit is further to capture state
data of the respective SRAMs.

9. The system of claim 1, wherein the scan capture device
captures the scan snapshot by stopping the clock and initi-
ating a single clock pulse triggering the capture of the scan
snapshot from a present state to the captured state for the
scan snapshot representing the known state of a plurality of
digital elements integrated within the silicon processor
under test.

10. The system of claim 1, wherein the scan capture
device comprises a quiesce unit to quiesce the silicon
processor under test before the scan snapshot is captured.

11. The system of claim 10, wherein the silicon processor
under test performs one or more of the following operations
during a quiesce phase responsive to the quiesce unit:

stop accepting new requests;

waiting for all prior requests to complete;

invalidating a first plurality of on-die SRAMs (Static
Random Access Memories) due to entry into the qui-
esce phase;

flushing a second plurality of on-die SRAMs to an invalid
state responsive to a flush instruction initiated during
the quiesce phase;

invalidating a first plurality of flip-flop and latch circuits
internal to the silicon processor under test due to entry
into the quiesce phase; and

copying state data from a second plurality of flip-flop and
latch circuits internal to the silicon processor under test
into a corresponding plurality of shadow flops, each of
the shadow flops to preserve the copied state data as
known state data for the corresponding second plurality
of flip-flop and latch circuits.

US 9,483,374 B2

19

12. The system of claim 1, wherein the plurality of digital
elements integrated within the silicon processor under test
comprises digital elements selected from the group com-
prising:

flip-flop circuits, each having state data in the silicon
processor under test;

latch circuits, each having state data in the silicon pro-
cessor under test; and

on-die cache SRAMs (Static Random Access Memories)
having memory to store state data within the silicon
processor under test.

13. The system of claim 1, wherein the scan capture
device captures the scan snapshot for the silicon processor
under test at an intermediate time t,, ; during a duration of a
test sequence from time t; to time t,, wherein time t;
represents a start of the test sequence and wherein time t,
represents a termination of the test sequence.

14. The system of claim 13, wherein the termination of the
test sequence at time t, occurs at a failure mode of the silicon
processor under test induced by the test sequence; and
wherein the intermediate time t, ; occurs after the start of
test sequence at time t; and before the failure mode of the
silicon processor under test at time t,.

15. The system of claim 13, wherein the scan capture
device to capture the scan snapshot comprises the scan
capture device to repetitively capture the scan snapshot on a
recurring periodic basis during the duration of the test
sequence from time t, to time t,, wherein a last captured scan
snapshot preceding a failure mode corresponding to the
termination of the test sequence corresponds to the scan
snapshot at time t,, ;.

16. The system of claim 13, wherein the model of the
silicon processor under test to replay the subset of the test
sequence for the silicon processor under test comprises the
model of the silicon processor under test to:

(a) jumpstart the model of the silicon processor under test
to a syncpoint using the last captured scan snapshot
preceding the failure mode corresponding to the termi-
nation of the test sequence at time t,_;;

(b) apply the captured input signals to the model of the
silicon processor under test starting from time t,,_;;

(c) replay the subset of the test sequence for the silicon
processor under test from time t, ; through time t,,
wherein time t, occurs at termination of the test
sequence for the silicon processor under test due to a
failure mode induced from the test sequence; and

wherein all changes to state data of the digital elements
integrated within the silicon processor under test are
viewable within the model of the silicon processor
under test from time t,,_; through time t,.

17. The system of claim 1, wherein the input signal
capture device comprises a logic analyzer to capture the
input signals applied to the silicon processor under test.

18. The system of claim 1, wherein the input signal
capture device comprises one or more on-die logic compo-
nents integrated with the silicon processor under test to
capture the input signals into the silicon processor under test.

19. The system of claim 1, wherein the input signal
capture device comprises a logic analyzer or one or more
on-die logic components integrated with the silicon proces-
sor under test, or a combination of the logic analyzer and the
one or more on-die logic components to capture the input
signals as applied to the silicon processor under test; and
wherein the input signal capture device captures the input
signals as applied to the silicon processor under test on each
and every cycle of the silicon processor under test for the
duration of a test sequence from time t, to time t,,.

20

25

30

35

40

45

50

55

20

20. The system of claim 1, wherein the input signal
capture device comprises an external interface to further
communicate the captured input signals to a storage point
physically external from the silicon processor under test for
persistent storage and later retrieval.

21. A method comprising:

capturing input signals applied to a silicon processor

under test;

capturing a scan snapshot representing a known state of a

plurality of digital elements integrated within the sili-

con processor under test, each having state data for the
silicon processor under test by,

(a) performing an at-speed scan capture of functional
flops and latches within the silicon processor under
test onto scan latches within the silicon processor
under test,

(b) quiescing the silicon processor under test to train
and invalidate SRAMs (Static Random Access
Memories) internal to the silicon processor under
test,

(c) capturing state data of the respective SRAMs after
quiescing the silicon processor under test,

(d) recommencing the test sequence after both of
performing the at-speed scan capture and capturing
state data of the respective SRAMs;

storing the captured input signals and the captured scan

snapshot to a storage point physically external from the

silicon processor under test, wherein storing the cap-
tured scan snapshot to the storage point physically
external from the silicon processor under test comprises
extracting the scan snapshot via an external interface

after termination of the test sequence at time t,;

jumpstarting a model of the silicon processor under test

with the captured scan snapshot; and

replaying a subset of a test sequence of silicon processor

under test within the model of the silicon processor

under test by applying the captured input signals to the

model of the silicon processor under test from time t,,_,

through time t,, wherein time t,, occurs at termination of

the test sequence for the silicon processor under test
due to a failure mode induced from the test sequence.

22. The method of claim 21, wherein the silicon processor
under test comprises a central processing unit for one of a
tablet computing device or a smart phone.

23. A non-transitory computer readable storage medium
having instructions stored thereon that, when executed by a
system, the instructions cause the system to perform opera-
tions comprising:

capturing input signals applied to a silicon processor

under test;

capturing a scan snapshot representing a known state of a

plurality of digital elements integrated within the sili-

con processor under test, each having state data for the
silicon processor under test by,

(a) performing an at-speed scan capture of functional
flops and latches within the silicon processor under
test onto scan latches within the silicon processor
under test,

(b) quiescing the silicon processor under test to train
and invalidate SRAMs (Static Random Access
Memories) internal to the silicon processor under
test,

(c) capturing state data of the respective SRAMs after
quiescing the silicon processor under test,

(d) recommencing the test sequence after both of
performing the at-speed scan capture and capturing
state data of the respective SRAMs;

US 9,483,374 B2
21

storing the captured input signals and the captured scan
snapshot to a storage point physically external from the
silicon processor under test, wherein storing the cap-
tured scan snapshot to the storage point physically
external from the silicon processor under test comprises 5
extracting the scan snapshot via an external interface
after termination of the test sequence at time t,;

jumpstarting a model of the silicon processor under test
with the captured scan snapshot; and

replaying a subset of a test sequence of silicon processor 10
under test within the model of the silicon processor
under test by applying the captured input signals to the
model of the silicon processor under test from time t,,_,
through time t,,, wherein time t,, occurs at termination of
the test sequence for the silicon processor under test 15
due to a failure mode induced from the test sequence.

#* #* #* #* #*

22

